Experimental and numerical investigation of a direct injection spark ignition hydrogen engine for heavy-duty applications

نویسندگان

چکیده

The H2 internal combustion engine is gaining increasing interest especially for commercial vehicles. Regarding the optimization of process, results experimental investigations on a heavy-duty single-cylinder in combination with numerical 3D-CFD are presented. In addition to Direct Injection (DI) Spark Ignited (SI) configuration, Port Fuel (PFI) explored provide reference near homogeneous cylinder charge. main objective assess 3D-CFD-RANS framework based ECFM and state-of-the art sub-models describe most important phenomena occurring spark ignition engines support analysis. Experimental show that PFI configuration provides efficiency emissions benefits at expense volumetric efficiency. proposed CFD model demonstrates ability successfully simulate different operating conditions both DI systems. particular, it shown charge stratification typical systems not beneficial studied as increases wall heat losses NOx formation.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Simulation a Natural Gas Direct Injection Stratified Charge with Spark Ignition Engine

The purpose of present paper is simulation a direct injection stratified charge natural gas engine. The KIVA-3V code was used for gaseous fuel injection simulation. Compression and expansion stroke of engine cycle is simulated using KIVA-3V code. In cylinder fuel equivalence ratio distribution criterion is used for studying mesh independency. The results show that 550000 cells number is suff...

متن کامل

The effect of hydrogen and nitrogen addition on heavy duty diesel engine emissions under reactivity controlled compression ignition combustion

The aim of this study is to evaluate a heavy duty diesel engine operation under reactivity controlled compression ignition combustion fueled with diesel oil and natural gas enriched with hydrogen and nitrogen addition. In this study, a single cylinder heavy– duty diesel engine is set to operate at 9.4bar gross IMEP (Mid- Load). The amount of injected diesel oil per cycle into the engine combust...

متن کامل

Improved efficiency of CNG using hydrogen in spark ignition engine

Experimental investigations carried out on a single-cylinder four-stroke motorcycle spark ignition engine operating on gasoline and natural gas are reported in the present paper when compressed natural gas (CNG) and hydrogen were used as fuel. The investigations were carried out by mixing a small percentage of hydrogen (5 to 30%) with CNG and supplied to the engine. Hydrogen and CNG were mixed ...

متن کامل

Experimental Study of Performance of Spark Ignition Engine with Gasoline and Natural Gas

The tests were carried out with the spark timing adjusted to the maximum brake torquetiming in various equivalence ratios and engine speeds for gasoline and natural gas operations. In thiswork, the lower heating value of gasoline is about 13.6% higher than that of natural gas. Based on theexperimental results, the natural gas operation causes an increase of about 6.2% brake special fuelconsumpt...

متن کامل

Combined effect of ignition and injection timing along with hydrogen enrichment to natural gas in a direct injection engine on performance and exhaust emission

To improve the engine performance and reduce emissions, factors such as changing ignition and injection timing along with converting of port injection system to direct injection in SI(spark-ignited) engines and hydrogen enrichment to CNG fuel at WOT conditions have a great importance. In this work, which was investigated experimentally (for CNG engine) and theoretically (for combustion Eddy Bre...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: International Journal of Hydrogen Energy

سال: 2022

ISSN: ['0360-3199', '1879-3487']

DOI: https://doi.org/10.1016/j.ijhydene.2022.06.184